АННОТАЦИЯ ДИСЦИПЛИНЫ

«Теплотехника»

Дисциплина «Теплотехника» является частью программы специалитета «Технология бурения нефтяных и газовых скважин (СУОС)» по направлению «21.05.06 Нефтегазовые техника и технологии».

Цели и задачи дисциплины

Формирование комплекса знаний В области получения, преобразования, передачи и использования теплоты, формирование умений и навыков термодинамического исследования рабочих процессов в теплообменных аппаратах, теплосиловых установках И других теплотехнических устройствах, применяемых в отрасли..

Изучаемые объекты дисциплины

Основные законы термодинамики и теплопередачи, термодинамические процессы и циклы, свойства рабочих тел (газов и паров), процессы передачи тепла теплопроводностью, конвекцией и излучением, основы расчета теплообменных аппаратов и теплоэнергетических установок..

Объем и виды учебной работы

ообсм и биды учсопои работы		
Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 5
1. Проведение учебных занятий (включая проведе-ние текущего контроля успеваемости) в форме: 1.1. Контактная аудиторная работа, из них:	36	36
- лекции (Л)	16	16
- лабораторные работы (ЛР)	18	18
- практические занятия, семинары и (или) другие виды занятий семинарского типа (ПЗ)		
- контроль самостоятельной работы (КСР)	2	2
- контрольная работа 1.2. Самостоятельная работа студентов (СРС)	72	72
2. Промежуточная аттестация Экзамен		
Дифференцированный зачет		
Зачет	9	9
Курсовой проект (КП)		
Курсовая работа (КР)	_	
Общая трудоемкость дисциплины	108	108

Краткое содержание дисциплины

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах			
	Л	ЛР	П3	CPC			
5-й семестр							
Теплопроводность и теплопередача	2	4	0	10			
Способы распространения теплоты: теплопроводность, конвекция, излучение, их сравнительный анализ. Теплоотдача и теплопередача. Интенсификация процессов теплообмена. Тепловой поток, плотность теплового потока. Температурное поле, температурный градиент. Закон Фурье. Дифференциальное уравнение теплопроводности. Условия однозначности: геометрические, теплофизические, краевые. Тепловые граничные условия. Теплопроводность и теплопередача при стационарном режиме и граничных условиях первого и третьего рода. Тепловая изоляция. Теплопроводность при нестационарном режиме.							
Теплообмен излучением. Сложный теплообмен Физическая сущность лучистого теплообмена,	2	0	0	10			
физическая сущность лучистого теплооомена, виды потоков излучения и радиационные характеристики тел. Основные законы теплового излучения (Планка, Вина, Стефана-Больцмана, Кирхгофа). Лучистый теплообмен между телами, разделенными прозрачной средой. Защита от теплового излучения. Сложный теплообмен. Моделирование сложного теплообмена граничными условиями третьего рода.							

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах
	Л	ЛР	ПЗ	CPC
Рабочее тело и его параметры	4	4	0	10
Предмет и задачи курса термодинамики и ее метод. Исторические сведения о развитии термодинамики. Законы термодинамики. Термодинамическая система, окружающая среда и взаимодействие между ними. Термодинамическое равновесие и термодинамический процесс. Рабочее тело. Реальный газ и модель идеального газа. Основные параметры состояния. Законы идеального газа. Уравнения состояния для идеального и реального газов (Клапейрона и Ван-Дер-Ваальса). Тепловые свойства рабочих тел, газовая постоянная. Теплоемкость газов, ее виды и взаимосвязь между ними. Зависимость теплоемкости от температуры и давления. Истинная и средняя теплоемкости. Теплоемкость как функция процесса. Изохорная и изобарная теплоемкости, уравнение Майера. Внутренняя энергия и энтальпия газа. Смеси идеальных газов. Способы задания смеси газов, закон Дальтона. Определение плотности смеси, кажущейся относительной молярной массы и газовой постоянной. Теплоемкость смеси газов.				
Первый закон термодинамики	2	4	0	10
Сущность и уравнение первого закона термодинамики. Слагаемые первого закона: внутренняя энергия, работа и теплота. Определение работы для газового потока и неподвижного газа. Математическая формулировка первого закона для газового потока и неподвижного газа, правило знаков. Равновесные термодинамические процессы и их графическое изображение в P-V диаграмме. Работа расширения-сжатия. Обратимые и необратимые процессы. Круговые термодинамические процессы (циклы). Первый закон термодинамики для цикла. Применение первого закона термодинамики для анализа политропных процессов. Уравнение политропы, показатель политропы, определение работы и теплоты. Теплоемкость процесса: Частные случаи политропного процесса: изохорный, изобарный, изотермический и адиабатный процессы. P-V диаграмма политропных				

Наименование разделов дисциплины с кратким содержанием	Объем аудиторных занятий по видам в часах			Объем внеаудиторных занятий по видам в часах
	Л	ЛР	П3	CPC
процессов.				
Второй закон термодинамики	2	4	0	10
Различные формулировки второго закона термодинамики. Прямые и обратные циклы и их эффективность. Идеальный термодинамический цикл Карно и его к.п.д. Теорема Карно. Абсолютная температура. Отрицательные абсолютные температуры и их получение. Энтропия - мера беспорядка и мера качества энергии. Изменение энтропии в обратимых и необратимых процессах. Принцип возрастания энтропии и физический смысл второго закона термодинамики. Эксергия и максимальная работа. Статистический характер второго закона термодинамики. Термодинамическая вероятность. Уравнение Больцмана. Фундаментальный характер второго закона термодинамики. Иллюстрация второго закона термодинамики на примерах. Тепловые диаграммы Т-S и I-S. Изображение процессов на тепловых диаграммах.				
Конвективный теплообмен	4	2	0	22
Уравнение Ньютона-Рихмана. Коэффициент теплоотдачи. Свободная и вынужденная конвекция. Ламинарный и турбулентный режим течения. Математическая постановка и пути решения краевой задачи конвективного теплообмена. Основы теории подобия. Критериальные уравнения теплоотдачи при свободном и вынужденном движении среды. Отдельные задачи конвективного теплообмена в однофазной среде. Теплоотдача при вынужденном движении жидкости в трубах и каналах. Теплоотдача при свободном движении теплоносителя. Внешнее обтекание тел простой формы. Конвективный теплообмен в замкнутом объеме. Интенсификация теплообмена.				
ИТОГО по 5-му семестру	16	18	0	72
ИТОГО по дисциплине	16	18	0	72